skip to main content


Search for: All records

Creators/Authors contains: "Akbari, Najva"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Vocalizations communicate information indicative of behavioural state across divergent social contexts. Yet, how brain regions actively pattern the acoustic features of context-specific vocal signals remains largely unexplored. The midbrain periaqueductal gray (PAG) is a major site for initiating vocalization among mammals, including primates. We show that PAG neurons in a highly vocal fish species (Porichthys notatus) are activated in distinct patterns during agonistic versus courtship calling by males, with few co-activated during a non-vocal behaviour, foraging. Pharmacological manipulations within vocally active PAG, but not hindbrain, sites evoke vocal network output to sonic muscles matching the temporal features of courtship and agonistic calls, showing that a balance of inhibitory and excitatory dynamics is likely necessary for patterning different call types. Collectively, these findings support the hypothesis that vocal species of fish and mammals share functionally comparable PAG nodes that in some species can influence the acoustic structure of social context-specific vocal signals.

     
    more » « less
  2. Schubert, Michael (Ed.)

    Electroporation is an increasingly common technique used for exogenous gene expression in live animals, but protocols are largely limited to traditional laboratory organisms. The goal of this protocol is to testin vivoelectroporation techniques in a diverse array of tadpole species. We explore electroporation efficiency in tissue-specific cells of five species from across three families of tropical frogs: poison frogs (Dendrobatidae), cryptic forest/poison frogs (Aromobatidae), and glassfrogs (Centrolenidae). These species are well known for their diverse social behaviors and intriguing physiologies that coordinate chemical defenses, aposematism, and/or tissue transparency. Specifically, we examine the effects of electrical pulse and injection parameters on species- and tissue-specific transfection of plasmid DNA in tadpoles. After electroporation of a plasmid encoding green fluorescent protein (GFP), we found strong GFP fluorescence within brain and muscle cells that increased with the amount of DNA injected and electrical pulse number. We discuss species-related challenges, troubleshooting, and outline ideas for improvement. Extendingin vivoelectroporation to non-model amphibian species could provide new opportunities for exploring topics in genetics, behavior, and organismal biology.

     
    more » « less
    Free, publicly-accessible full text available August 17, 2024
  3. Abstract

    Comprehensive understanding of interconnected networks within the brain requires access to high resolution information within large field of views and over time. Currently, methods that enable mapping structural changes of the entire brain in vivo are extremely limited. Third harmonic generation (THG) can resolve myelinated structures, blood vessels, and cell bodies throughout the brain without the need for any exogenous labeling. Together with deep penetration of long wavelengths, this enables in vivo brain‐mapping of large fractions of the brain in small animals and over time. Here, we demonstrate that THG microscopy allows non‐invasive label‐free mapping of the entire brain of an adult vertebrate,Danionella dracula, which is a miniature species of cyprinid fish. We show this capability in multiple brain regions and in particular the identification of major commissural fiber bundles in the midbrain and the hindbrain. These features provide readily discernable landmarks for navigation and identification of regional‐specific neuronal groups and even single neurons during in vivo experiments. We further show how this label‐free technique can easily be coupled with fluorescence microscopy and used as a comparative tool for studies of other species with similar body features toDanionella, such as zebrafish (Danio rerio)and tetras (Trochilocharax ornatus). This new evidence, building on previous studies, demonstrates how small size and relative transparency, combined with the unique capabilities of THG microscopy, can enable label‐free access to the entire adult vertebrate brain.

     
    more » « less
  4. Multiphoton fluorescence microscopy enables deepin vivoimaging by using long excitation wavelengths to increase the penetration depth of ballistic photons and nonlinear excitation to suppress the out-of-focus fluorescence. However, the imaging depth of multiphoton microscopy is limited by tissue scattering and absorption. This fundamental depth limit for two-photon microscopy has been studied theoretically and experimentally. Long wavelength three-photon fluorescence microscopy was developed to image beyond the depth limit of two-photon microscopy and has achieved unprecedentedin vivoimaging depth. Here we extend the theoretical framework for characterizing the depth limit of two-photon microscopy to three-photon microscopy. We further verify the theoretical predictions with experimental results from tissue phantoms. We demonstrate experimentally that high spatial resolution diffraction-limited imaging at a depth of 10 scattering mean free paths, which is nearly twice the transport mean free path, is possible with multiphoton microscopy. Our results indicate that the depth limit of three-photon microscopy is significantly beyond what has been achieved in biological tissues so far, and further technological development is required to reach the full potential of three-photon microscopy.

     
    more » « less